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Third-neighbor correlators of a one-dimensional spin-12 Heisenberg antiferromagnet
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We exactly evaluate the third-neighbor correlator^Sj
zSj 13

z & and all the possible nonzero correlators
^Sj

aSj 11
b Sj 12

g Sj 13
d & of the one-dimensional spin-1

2 HeisenbergXXX antiferromagnet in the ground state without
magnetic field. All the correlators are expressed in terms of certain combinations of logarithm ln 2, the
Riemann zeta functionz(3), z(5) with rational coefficients. The results accurately coincide with the numerical
ones obtained by the density-matrix renormalization group method and the numerical diagonalization.
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The spin-12 HeisenbergXXXchain

H5J(
j 51

L

~Sj
xSj 11

x 1Sj
ySj 11

y 1Sj
zSj 11

z ! ~1!

is one of the most fundamental solvable models describ
quantum magnetism in low dimensions@1#. The physical
properties have been comprehensively studied by mean
the Bethe ansatz@2,3#. However, the exact calculation of th
correlation functions, which is a central problem in ma
ematical physics, is in general still quite difficult. Especia
significant are the spin-spin correlators^Sj

zSj 1k
z & ~or equiva-

lently ^Sj
1Sj 1k

2 &/2; Sj
65Sj

x6 iSj
y), for which only the first

and second neighbors (k51,2) have been exactly calculate
so far:

^Sj
zSj 11

z &5 1
12 2 1

3 ln 2.20.147 715 726 85, ~2!

^Sj
zSj 12

z &5 1
12 2 4

3 ln 21 3
4 z~3!.0.060 679 769 96, ~3!

wherez(s) is the Riemann zeta function and^•••& denotes
the ground state expectation value of the antiferromagn
model (J.0) in the thermodynamic limitL→`.

On the other hand, the long-distance asymptotics are
termined from field theoretical approaches~see, for example
Refs. @4,5#!. In this framework, however, microscopica
properties coming from lattice structures are renormali
from the very beginning. In this respect, the exact calculat
for the finite distance correlations directly from the Bet
ansatz and eventually to determine the asymptotics f
them are quite important problems.

As a first step, in this paper, we report our results ab
the third-neighbor correlators. Our main result is

^Sj
zSj 13

z &5 1
2 ^Sj

1Sj 13
2 &5 1

12 23 ln 21 37
6 z~3!2 14

3 z~3!ln 2

2 3
2 z~3!22 125

24 z~5!1 25
3 z~5!ln 2

.20.050 248 627 26. ~4!

In addition, we obtain the third-neighbor one-particle Gre
function ^cj

†cj 13& f ,
1063-651X/2003/67~6!/065101~4!/$20.00 67 0651
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^cj
†cj 13& f5

1
30 22 ln 21 169

30 z~3!2 10
3 z~3!ln 22 6

5 z~3!2

2 65
12 z~5!1 20

3 z~5!ln 2.0.082 287 716 69,

~5!

for the isotropic spinless fermion model corresponding to E
~1! by the Jordan-Wigner transformation:

Sk
25)

j 51

k21

~122cj
†cj !ck

† , Sk
15)

j 51

k21

~122cj
†cj !ck . ~6!

Here ^•••& f denotes the expectation value in the ha
filled state of the spinless fermion model. Note that t
different boundary effects caused by the Jordan-Wig
transformation can be ignored because we consider the
modynamic limit L→`. Therefore, we havê cj

†cj 13& f

54^Sj
1Sj 11

z Sj 12
z Sj 13

2 &. Moreover, we exactly calculate a
the possible nonzero correlators^Sj

aSj 11
b Sj 12

g Sj 13
d &. Result

~2! comes from the ground state energy of Eq.~1! derived by
Hulthén in 1938@3#, while Eq. ~3! was obtained by one o
the authors in 1977@6,7# via the strong coupling expansio
for the ground state energy of the half-filled Hubbard mo
~see also Ref.@8# for another derivation!.

On the other hand, utilizing the representation theory
the quantum affine algebraUq(sl2̂), in 1992, Jimbo and co-
workers derived a universal multiple integral representat
of arbitrary correlators for the massiveXXZ antiferromagnet
@9,10#. Their result has been extended to theXXX @11,12#,
the masslessXXZ @13,14#, and theXYZ @15# antiferromag-
nets. However, the explicit evaluation, even for the seco
neighbor correlator~3!, was not achieved for a long time.

In this respect, it is remarkable that Boos and Korep
recently devised a general method to evaluate the mult
integral representation in the study of the emptiness form
tion probability~EFP! for the XXX antiferromagnet@16,17#.
The EFP,P(n) describes the probability of finding a ferro
magnetic string of lengthn in the antiferromagnetic ground
state@12#. Explicitly,

P~n!5K )
j 51

n S Sj
z1

1

2D L . ~7!
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By reducing the integrand of the multiple integral repres
tation, the EFP forn53,4 @16,17# andn55 @18# were evalu-
ated by Booset al. ~see also recent progress forn56 @19#!.
Note thatP(2) andP(3) are related to the first- and secon
neighbor correlators. Here we quote the explicit form
P(4) obtained in Refs.@16,17#, which is closely related to
the third-neighbor correlator̂Sj

zSj 13
z &.

P~4!5 1
16 1 3

4 ^Sj
zSj 11

z &1 1
2 ^Sj

zSj 12
z &1 1

4 ^Sj
zSj 13

z &

1^Sj
zSj 11

z Sj 12
z Sj 13

z &

5 1
5 22ln 21 173

60 z~3!2 11
6 z~3!ln 22 51

80 z~3!22 55
24 z~5!

1 85
24 z~5!ln 2. ~8!

Note that on the antiferromagnetic ground state without m
netic field, all the correlators with an odd number ofSz van-
ishes. Substituting Eqs.~2! and~3! into Eq.~8!, one finds the
relation between the third-neighbor correlator^Sj

zSj 13
z & and

the four-point correlator̂ Sj
zSj 11

z Sj 12
z Sj 13

z &. However, the
exact value of̂ Sj

zSj 13
z & itself cannot be determined sole

from P(4).
To determinê Sj

zSj 13
z &, we consider the following auxil-

iary correlator:

P1212
12125 1

16 2 3
4 ^Sj

zSj 11
z &1 1

2 ^Sj
zSj 12

z &2 1
4 ^Sj

zSj 13
z &

1^Sj
zSj 11

z Sj 12
z Sj 13

z &. ~9!

Here and hereafterP«1«2«3«4

«̃1«̃2«̃3«̃4 ~also written asP«
«̃ for simplic-

ity! denotes a correlator of the form

P«1«2«3«4

«̃1«̃2«̃3«̃45^E1
«̃1«1E2

«̃2«2E3
«̃3«3E4

«̃4«4&, ~10!

where « j , «̃ j5$1,2% and Ej
« j «̃ j is the 232 elementary

matrix (E6656Sz11/2, E215S1, E125S2) acting on
the j th site. In this notation,P(4)5P1111

1111 . Note that be-
cause the Hamiltonian~1! has the symmetry under the grou

SU(2), P«
«̃ possesses a property like

P«
«̃5P«̃

«
5P2«

2 «̃5P
2 «̃
2« . ~11!

As in the case ofP(4), correlators~10! enjoy the multiple
integral representation@9–11,13#:

P«
«̃5)

j 51

4 E
C

dl j

2p i
U~l1 , . . . ,l4!T~l1 , . . . ,l4!, ~12!

where the integration contourC is taken to be a line@2`
2 ia,`2 ia# (0,a,1). For convenience, we choosea
51/2. The integrandU(l1 , . . . ,l4) is given by

U~l1 , . . . ,l4!5p10

)
1<k, j <4

sinhpl jk

)
j 51

4

sinh4pl j

, ~13!
06510
-

f

-

while T(l1 , . . . ,l4) depends on the selection of« and «̃.
Here and hereafter we use the notationl jk5l j2lk to save
space. In particular, for correlator~9!, T(l1 , . . . ,l4) is
given by

T~l1 , . . . ,l4!5
l1~l11 i !2l2

3l3~l31 i !2l4
3

~l212 i !l31l41l32l42~l432 i !
. ~14!

To calculate the multiple integral~12!, we follow the
method by Boos and Korepin@17#. Roughly, their method is
described as follows. First taking carefully into account t
property of U(l1 , . . . ,l4), we modify the integrand
T(l1 , . . . ,l4) such that the integral gives the same result
the original one~‘‘weak equivalence’’!. In this way it is
likely that the integrandT(l1 , . . . ,l4) can always be re-
duced to the following form~we call it ‘‘canonical form’’!:

Tc5P0~l2 ,l3 ,l4!1
P1~l1 ,l3 ,l4!

l21
1

P2~l1 ,l3!

l21l43
, ~15!

where P0 , P1, and P2 are certain polynomials. Once on
derives the canonical form, one can perform the multi
integral ~12! by using the Cauchy theorem@17#. Conse-
quently, the main part of the calculation for the multip
integral ~12! reduces to finding the canonical form~15!.

Now we consider case~14! and show that the Boos
Korepin method is also applicable to our case. Let us int
duce the following diagram:

where j .k. First we expand Eq.~14! through partial frac-
tions. The result consists of 24 terms. Taking into account
antisymmetry of function~13! under transposition of any two
variablesl j andlk and the symmetry ofT, Eq. ~14!, under
l1↔l3 , l2↔l4, we can reduce the 24 partial fractions
eight. Diagrammatically, its denominators are written as

From a symmetry of the denominator, the second term
further be simplified as
1-2
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whereg denotes the numerator of Eq.~14!. Next using the
Cauchy theorem, we shift variablesl j→l j6 i such that the
denominators do not containi. For instance, we have

Finally again using the antisymmetric property of Eq.~13!,
we eliminate the symmetric part with respect tol j↔lk . In
this way we obtain the canonical form as

P05 56
5 l2l3

2l4
3 ,

P15 27
10 l42 il4

21 33
5 l3l4

21 4
5 l4

312il3l4
314l3

2l4
3

1l1~24il417l4
2232il3l4

2210il4
3212il3

2l4
3!

1l1
2~4l4219il4

2228l3l4
2210l4

3

228il3l4
3232l3

2l4
3!,

P252 3
10 1 3

2 il31 3
2 l1l32 1

2 l3
214il1l3

216l1
2l3

2 .

Subsequently, applying the method given in Ref.@17#, we
calculate the multiple integral by substituting the above
nonical form into Eq.~12!. Explicitly,

P1212
12125J01J11J2

J05 7
10 , J152 2

3 1 3
10 z~3!1 35

32 z~5!,

J252 1
2 z~3!1 1

2 z~3!ln 21 9
80 z~3!22 25

32 z~5!2 5
8 z~5!ln 2,

~16!

whereJk denotes the result of the integration regarding te
Pk . Note that the canonical form is not unique due to t
nonuniqueness of partial fraction expansions. Accordin
the explicit value of eachJk depends on the choice of th
canonical form. The final resultJ01J11J2, however, is
unique as a matter of course.

Combining result~16! with Eqs.~8! and~9!, we obtain the
third-neighbor correlator̂Sj

zSj 13
z & ~4! and at the same time

the correlator̂ Sj
zSj 11

z Sj 12
z Sj 13

z & as

^Sj
zSj 11

z Sj 12
z Sj 13

z &5 1
80 2 1

3 ln 21 29
30 z~3!2 2

3 z~3!ln 2

2 21
80 z~3!22 95

96 z~5!1 35
24 z~5!ln 2.

~17!

Now let us consider the four-point correlators of the fo
^Sj

aSj 11
b Sj 12

g Sj 13
d & ($a,b,g,d%P$x,y,z,0%;Sj

051). Because
the correlators with an odd number ofS$a%\0 vanish, the
possible nonzero correlators are restricted to the follow
06510
-

e
y,

g

three types: ^Sj
aSj 11

a Sj 12
b Sj 13

b &, ^Sj
aSj 11

b Sj 12
a Sj 13

b &, and

^Sj
aSj 11

b Sj 12
b Sj 13

a &. Further, due to the isotropy of th
Hamiltonian ~1!, one can find that the independent corre
tors are written as the following:̂ Sj

xSj 11
z Sj 12

z Sj 13
x &,

^Sj
zSj 11

x Sj 12
z Sj 13

x &, ^Sj
zSj 11

z Sj 12
x Sj 13

x & and those already
obtained in Eqs.~2!–~4! and ~17!. Then we shall calculate
the remaining three correlators here. For convenience we
the operatorS6 instead ofSx. First we consider correlato
^Sj

1Sj 11
z Sj 12

z Sj 13
2 &(52^Sj

xSj 11
z Sj 12

z Sj 13
x &). From Eq. ~10!

and property ~11!, this correlator is expressed a
^Sj

1Sj 11
z Sj 12

z Sj 13
2 &5(P2111

11122P2121
1122)/2. Using relation

^Sj
1Sj 13

2 &52(P2111
11121P2121

1122), we obtain

^Sj
1Sj 11

z Sj 12
z Sj 13

2 &5P2111
11122 1

2 ^Sj
zSj 13

z &. ~18!

Similarly, the other correlators are given by

^Sj
zSj 11

1 Sj 12
z Sj 13

2 &5P1211
11122 1

2 ^Sj
zSj 12

z &,

^Sj
zSj 11

z Sj 12
1 Sj 13

2 &5P1121
11122 1

2 ^Sj
zSj 11

z &. ~19!

Therefore our goal is to evaluate the auxiliary correlat
P2111

1112 , P1211
1112 , and P1121

1112 . They are given if we re-
place the integrandT(l1 , . . . ,l4) by

T( l )5
~l11 i !3l2~l21 i !2~l31 i !l3

2l4
42 l~l41 i ! l 21

~l212 i !~l312 i !~l322 i !l41l42l43

in the multiple integral representation. Here correlato
P1112

2111 , P1112
1211 , andP1112

1121 correspond tol 51, 2, and
3, respectively. Using the procedure similar to the case
P1212

1212 , one obtains the explicit values of the above aux
iary correlators. As a result, combining the relations~18! and
~19! with Eqs.~2!–~4!, we arrive at

^Sj
1Sj 11

z Sj 12
z Sj 13

2 &5 1
1202 1

2 ln 21 169
120z~3!2 5

6 z~3!ln 2

2 3
10 z~3!22 65

48 z~5!1 5
3 z~5!ln 2,

~20!

^Sj
1Sj 11

z Sj 12
2 Sj 13

z &5 1
1202 1

3 ln 21 77
60 z~3!2 5

6 z~3!ln 2

2 3
10 z~3!22 65

48 z~5!1 5
3 z~5!ln 2,

~21!

^Sj
1Sj 11

2 Sj 12
z Sj 13

z &5 1
1201 1

6 ln 22 91
120z~3!1 1

3 z~3!ln 2

1 3
40 z~3!21 35

48 z~5!2 5
12 z~5!ln 2.

~22!

We mention a few remarks of our results.
~i! All the above correlators are written as the logarith

ln 2, the Riemann zeta functionsz(3) andz(5). This agrees
with the general conjecture by Boos and Korepin:arbitrary
correlators of the XXX antiferromagnet are described
certain combinations of logarithmln 2, the Riemann zeta
function with odd arguments and rational coefficients.Espe-
1-3
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cially intriguing is the existence of the nonlinear terms su
asz(3)2, z(3)ln 2, andz(5)ln 2.

~ii ! As mentioned before, correlator~20! is interpreted as
the third-neighbor one-particle Green function^cj

†cj 13& f /4
via the Jordan-Wigner transformation~6!. Obviously, the
first-neighbor one-particle Green function is expressed a

^cj
†cj 11& f5

1
6 2 2

3 ln 2.20.295 431 453 707,

which coincides with^Sj
1Sj 11

2 &. From the Jordan-Wigne
transformation,^cj

†ck&50 when j 2k is even. Therefore
quantity ~5! is the first nontrivial exact result of the correla
tors containing the fermionic nature.

~iii ! The difference between Eqs.~20! and ~21! gives the
nearest chiral correlator

^~Sj3Sj 11!•~Sj 123Sj 13!&53~^Sj
1Sj 11

z Sj 12
2 Sj 13

z &

2^Sj
1Sj 11

z Sj 12
z Sj 13

2 &!

5 1
2 ln 22 3

8 z~3!,

TABLE I. Estimates of the correlators by the exact evaluatio
DMRG, and the extrapolations from the numerical diagonalizat
for the system sizeL524,28,32.

Correlators Exact DMRG Extrap

^Sj
zSj 13

z & 20.0502486 20.0502426 20.0502475

^Sj
1Sj 11

z Sj 12
z Sj 13

2 &a 0.0205719 0.0205681 0.020571

^Sj
zSj 11

z Sj 12
z Sj 13

z & 0.0307153 0.0307105 0.030715

^Sj
1Sj 11

z Sj 12
2 Sj 13

z & 20.0141607 20.0141579 20.0141606

^Sj
1Sj 11

2 Sj 12
z Sj 13

z & 0.0550194 0.0550108 0.055019

a 1
4 ^cj

†cj 13& f .
le

t.

e
I,

v,

06510
h

which exactly agrees with that derived from the ground st
energy of an integrable two-chain model with four-body i
teractions@20#.

To confirm the validity of our formulas, we performe
numerical calculations by using the density-matrix renorm
ization group~DMRG! @21,22# and numerical diagonaliza
tion. As for the DMRG, we followed the standard algorith
@23#. We have repeated renormalization 500 times. At e
renormalization, we kept, at most, 200 relevant states fo
~new! block. The numerical diagonalization was perform
for the system sizeL524, 28, and 32. We extrapolate th
data from a fitting functiona01a1 /L21a2 /L4. All our ana-
lytical results coincide quite accurately with both numeric
results~Table I!.

In closing we would like to comment on generalizatio
of the present results. The extension to the calculation
higher-neighbor correlatorŝSj

zSj 1k
z &k>4 is of great interest.

The fourth-neighbor correlator̂Sj
zSj 14

z &, for example, will
be calculated by combination of the EFP,P(5) and two in-
dependent auxiliary correlators, which can, in principle,
evaluated. In factP(5) has been already obtained in Re
@18#. The computation, however, is much more complicat
Alternatively, extending the present result to the inhomo
neous case as in Ref.@19# and taking into account the prop
erty of the quantum Knizhnik-Zamolodchikow equation, w
may also derive higher-neighbor correlators.
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