Third-neighbor correlators of a one-dimensional spin- $\frac{1}{2}$ Heisenberg antiferromagnet

Kazumitsu Sakai, ${ }^{1}$ Masahiro Shiroishi, ${ }^{1}$ Yoshihiro Nishiyama, ${ }^{2}$ and Minoru Takahashi ${ }^{1}$
${ }^{1}$ Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
${ }^{2}$ Department of Physics, Faculty of Science, Okayama University, Okayama 700-8530, Japan

(Received 27 February 2003; published 20 June 2003)

Abstract

We exactly evaluate the third-neighbor correlator $\left\langle S_{j}^{z} S_{j+3}^{z}\right\rangle$ and all the possible nonzero correlators $\left\langle S_{j}^{\alpha} S_{j+1}^{\beta} S_{j+2}^{\gamma} S_{j+3}^{\delta}\right\rangle$ of the one-dimensional spin- $\frac{1}{2}$ Heisenberg $X X X$ antiferromagnet in the ground state without magnetic field. All the correlators are expressed in terms of certain combinations of logarithm $\ln 2$, the Riemann zeta function $\zeta(3), \zeta(5)$ with rational coefficients. The results accurately coincide with the numerical ones obtained by the density-matrix renormalization group method and the numerical diagonalization.

DOI: 10.1103/PhysRevE.67.065101
PACS number(s): 05.50.+q, 75.10.Jm, 02.30.Ik, 75.50.Ee

The spin- $\frac{1}{2}$ Heisenberg $X X X$ chain

$$
\begin{equation*}
H=J \sum_{j=1}^{L}\left(S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}+S_{j}^{z} S_{j+1}^{z}\right) \tag{1}
\end{equation*}
$$

is one of the most fundamental solvable models describing quantum magnetism in low dimensions [1]. The physical properties have been comprehensively studied by means of the Bethe ansatz [2,3]. However, the exact calculation of the correlation functions, which is a central problem in mathematical physics, is in general still quite difficult. Especially significant are the spin-spin correlators $\left\langle S_{j}^{z} S_{j+k}^{z}\right\rangle$ (or equivalently $\left\langle S_{j}^{+} S_{j+k}^{-}\right\rangle / 2 ; S_{j}^{ \pm}=S_{j}^{x} \pm i S_{j}^{y}$), for which only the first and second neighbors ($k=1,2$) have been exactly calculated so far:

$$
\begin{equation*}
\left\langle S_{j}^{z} S_{j+1}^{z}\right\rangle=\frac{1}{12}-\frac{1}{3} \ln 2 \simeq-0.14771572685 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle S_{j}^{z} S_{j+2}^{z}\right\rangle=\frac{1}{12}-\frac{4}{3} \ln 2+\frac{3}{4} \zeta(3) \simeq 0.06067976996 \tag{3}
\end{equation*}
$$

where $\zeta(s)$ is the Riemann zeta function and $\langle\cdots\rangle$ denotes the ground state expectation value of the antiferromagnetic model $(J>0)$ in the thermodynamic limit $L \rightarrow \infty$.

On the other hand, the long-distance asymptotics are determined from field theoretical approaches (see, for example, Refs. [4,5]). In this framework, however, microscopical properties coming from lattice structures are renormalized from the very beginning. In this respect, the exact calculation for the finite distance correlations directly from the Bethe ansatz and eventually to determine the asymptotics from them are quite important problems.

As a first step, in this paper, we report our results about the third-neighbor correlators. Our main result is

$$
\begin{align*}
\left\langle S_{j}^{z} S_{j+3}^{z}\right\rangle= & \frac{1}{2}\left\langle S_{j}^{+} S_{j+3}^{-}\right\rangle=\frac{1}{12}-3 \ln 2+\frac{37}{6} \zeta(3)-\frac{14}{3} \zeta(3) \ln 2 \\
& -\frac{3}{2} \zeta(3)^{2}-\frac{125}{24} \zeta(5)+\frac{25}{3} \zeta(5) \ln 2 \\
\simeq & -0.05024862726 . \tag{4}
\end{align*}
$$

In addition, we obtain the third-neighbor one-particle Green function $\left\langle c_{j}^{\dagger} c_{j+3}\right\rangle_{f}$,

$$
\begin{align*}
\left\langle c_{j}^{\dagger} c_{j+3}\right\rangle_{f}= & \frac{1}{30}-2 \ln 2+\frac{169}{30} \zeta(3)-\frac{10}{3} \zeta(3) \ln 2-\frac{6}{5} \zeta(3)^{2} \\
& -\frac{65}{12} \zeta(5)+\frac{20}{3} \zeta(5) \ln 2 \simeq 0.08228771669 \tag{5}
\end{align*}
$$

for the isotropic spinless fermion model corresponding to Eq. (1) by the Jordan-Wigner transformation:

$$
\begin{equation*}
S_{k}^{-}=\prod_{j=1}^{k-1}\left(1-2 c_{j}^{\dagger} c_{j}\right) c_{k}^{\dagger}, \quad S_{k}^{+}=\prod_{j=1}^{k-1}\left(1-2 c_{j}^{\dagger} c_{j}\right) c_{k} \tag{6}
\end{equation*}
$$

Here $\langle\cdots\rangle_{f}$ denotes the expectation value in the halffilled state of the spinless fermion model. Note that the different boundary effects caused by the Jordan-Wigner transformation can be ignored because we consider the thermodynamic limit $L \rightarrow \infty$. Therefore, we have $\left\langle c_{j}^{\dagger} c_{j+3}\right\rangle_{f}$ $=4\left\langle S_{j}^{+} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{-}\right\rangle$. Moreover, we exactly calculate all the possible nonzero correlators $\left\langle S_{j}^{\alpha} S_{j+1}^{\beta} S_{j+2}^{\gamma} S_{j+3}^{\delta}\right\rangle$. Result (2) comes from the ground state energy of Eq. (1) derived by Hulthén in 1938 [3], while Eq. (3) was obtained by one of the authors in 1977 [6,7] via the strong coupling expansion for the ground state energy of the half-filled Hubbard model (see also Ref. [8] for another derivation).

On the other hand, utilizing the representation theory of the quantum affine algebra $U_{q}\left(\widehat{s l_{2}}\right)$, in 1992, Jimbo and coworkers derived a universal multiple integral representation of arbitrary correlators for the massive $X X Z$ antiferromagnet $[9,10]$. Their result has been extended to the $X X X[11,12]$, the massless $X X Z[13,14]$, and the $X Y Z[15]$ antiferromagnets. However, the explicit evaluation, even for the secondneighbor correlator (3), was not achieved for a long time.

In this respect, it is remarkable that Boos and Korepin recently devised a general method to evaluate the multiple integral representation in the study of the emptiness formation probability (EFP) for the $X X X$ antiferromagnet $[16,17]$. The EFP, $P(n)$ describes the probability of finding a ferromagnetic string of length n in the antiferromagnetic ground state [12]. Explicitly,

$$
\begin{equation*}
P(n)=\left\langle\prod_{j=1}^{n}\left(S_{j}^{z}+\frac{1}{2}\right)\right\rangle \tag{7}
\end{equation*}
$$

By reducing the integrand of the multiple integral representation, the EFP for $n=3,4[16,17]$ and $n=5[18]$ were evaluated by Boos et al. (see also recent progress for $n=6$ [19]). Note that $P(2)$ and $P(3)$ are related to the first- and secondneighbor correlators. Here we quote the explicit form of $P(4)$ obtained in Refs. [16,17], which is closely related to the third-neighbor correlator $\left\langle S_{j}^{z} S_{j+3}^{z}\right\rangle$.

$$
\begin{align*}
P(4)= & \frac{1}{16}+\frac{3}{4}\left\langle S_{j}^{z} S_{j+1}^{z}\right\rangle+\frac{1}{2}\left\langle S_{j}^{z} S_{j+2}^{z}\right\rangle+\frac{1}{4}\left\langle S_{j}^{z} S_{j+3}^{z}\right\rangle \\
& +\left\langle S_{j}^{z} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{z}\right\rangle \\
= & \frac{1}{5}-2 \ln 2+\frac{173}{60} \zeta(3)-\frac{11}{6} \zeta(3) \ln 2-\frac{51}{80} \zeta(3)^{2}-\frac{55}{24} \zeta(5) \\
& +\frac{85}{24} \zeta(5) \ln 2 \tag{8}
\end{align*}
$$

Note that on the antiferromagnetic ground state without magnetic field, all the correlators with an odd number of S^{z} vanishes. Substituting Eqs. (2) and (3) into Eq. (8), one finds the relation between the third-neighbor correlator $\left\langle S_{j}^{z} S_{j+3}^{z}\right\rangle$ and the four-point correlator $\left\langle S_{j}^{z} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{z}\right\rangle$. However, the exact value of $\left\langle S_{j}^{z} S_{j+3}^{z}\right\rangle$ itself cannot be determined solely from $P(4)$.

To determine $\left\langle S_{j}^{z} S_{j+3}^{z}\right\rangle$, we consider the following auxiliary correlator:

$$
\begin{align*}
P_{+-+-}^{+-+-}= & \frac{1}{16}-\frac{3}{4}\left\langle S_{j}^{z} S_{j+1}^{z}\right\rangle+\frac{1}{2}\left\langle S_{j}^{z} S_{j+2}^{z}\right\rangle-\frac{1}{4}\left\langle S_{j}^{z} S_{j+3}^{z}\right\rangle \\
& +\left\langle S_{j}^{z} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{z}\right\rangle . \tag{9}
\end{align*}
$$

Here and hereafter $P_{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{4}}^{\tilde{\varepsilon}_{1} \tilde{\varepsilon}_{2} \tilde{z}_{3} \tilde{\varepsilon}_{4}}$ (also written as $P_{\varepsilon}^{\tilde{\varepsilon}}$ for simplicity) denotes a correlator of the form

$$
\begin{equation*}
P_{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{4}}^{\tilde{\varepsilon}_{1} \tilde{\varepsilon}_{3} \tilde{\varepsilon}_{3} \tilde{\varepsilon}_{4}}=\left\langle E_{1}^{\tilde{\varepsilon}_{1} \varepsilon_{1}} E_{2}^{\tilde{\varepsilon}_{2} \varepsilon_{2}} E_{3}^{\tilde{\varepsilon}_{3} \varepsilon_{3}} E_{4}^{\tilde{\varepsilon}_{4} \varepsilon_{4}}\right\rangle \tag{10}
\end{equation*}
$$

where $\varepsilon_{j}, \tilde{\varepsilon}_{j}=\{+,-\}$ and $E_{j}^{\varepsilon_{j} \tilde{\varepsilon}_{j}}$ is the 2×2 elementary matrix ($E^{ \pm \pm}= \pm S^{z}+1 / 2, E^{-+}=S^{+}, E^{+-}=S^{-}$) acting on the j th site. In this notation, $P(4)=P_{++++}^{+++}$. Note that because the Hamiltonian (1) has the symmetry under the group $\mathrm{SU}(2), P_{\varepsilon}^{\tilde{\varepsilon}}$ possesses a property like

$$
\begin{equation*}
P_{\varepsilon}^{\tilde{\varepsilon}}=P_{\tilde{\varepsilon}}^{\varepsilon}=P_{-\varepsilon}^{-\tilde{\varepsilon}}=P_{-\tilde{\varepsilon}}^{-\varepsilon} \tag{11}
\end{equation*}
$$

As in the case of $P(4)$, correlators (10) enjoy the multiple integral representation [9-11,13]:

$$
\begin{equation*}
P_{\varepsilon}^{\tilde{\varepsilon}}=\prod_{j=1}^{4} \int_{C} \frac{d \lambda_{j}}{2 \pi i} U\left(\lambda_{1}, \ldots, \lambda_{4}\right) T\left(\lambda_{1}, \ldots, \lambda_{4}\right) \tag{12}
\end{equation*}
$$

where the integration contour C is taken to be a line $[-\infty$ $-i \alpha, \infty-i \alpha] \quad(0<\alpha<1)$. For convenience, we choose α $=1 / 2$. The integrand $U\left(\lambda_{1}, \ldots, \lambda_{4}\right)$ is given by

$$
\begin{equation*}
U\left(\lambda_{1}, \ldots, \lambda_{4}\right)=\pi^{10} \frac{\prod_{1 \leqslant k<j \leqslant 4} \sinh \pi \lambda_{j k}}{\prod_{j=1}^{4} \sinh ^{4} \pi \lambda_{j}} \tag{13}
\end{equation*}
$$

where g denotes the numerator of Eq. (14). Next using the Cauchy theorem, we shift variables $\lambda_{j} \rightarrow \lambda_{j} \pm i$ such that the denominators do not contain i. For instance, we have

Finally again using the antisymmetric property of Eq. (13), we eliminate the symmetric part with respect to $\lambda_{j} \leftrightarrow \lambda_{k}$. In this way we obtain the canonical form as

$$
\begin{gathered}
P_{0}=\frac{56}{5} \lambda_{2} \lambda_{3}^{2} \lambda_{4}^{3} \\
P_{1}=\frac{27}{10} \lambda_{4}-i \lambda_{4}^{2}+\frac{33}{5} \lambda_{3} \lambda_{4}^{2}+\frac{4}{5} \lambda_{4}^{3}+2 i \lambda_{3} \lambda_{4}^{3}+4 \lambda_{3}^{2} \lambda_{4}^{3} \\
+\lambda_{1}\left(-4 i \lambda_{4}+7 \lambda_{4}^{2}-32 i \lambda_{3} \lambda_{4}^{2}-10 i \lambda_{4}^{3}-12 i \lambda_{3}^{2} \lambda_{4}^{3}\right) \\
+\lambda_{1}^{2}\left(4 \lambda_{4}-19 i \lambda_{4}^{2}-28 \lambda_{3} \lambda_{4}^{2}-10 \lambda_{4}^{3}\right. \\
\left.-28 i \lambda_{3} \lambda_{4}^{3}-32 \lambda_{3}^{2} \lambda_{4}^{3}\right) \\
P_{2}=-\frac{3}{10}+\frac{3}{2} i \lambda_{3}+\frac{3}{2} \lambda_{1} \lambda_{3}-\frac{1}{2} \lambda_{3}^{2}+4 i \lambda_{1} \lambda_{3}^{2}+6 \lambda_{1}^{2} \lambda_{3}^{2}
\end{gathered}
$$

Subsequently, applying the method given in Ref. [17], we calculate the multiple integral by substituting the above canonical form into Eq. (12). Explicitly,

$$
\begin{gather*}
P_{+-+-}^{+-+-}=J_{0}+J_{1}+J_{2} \\
J_{0}=\frac{7}{10}, \quad J_{1}=-\frac{2}{3}+\frac{3}{10} \zeta(3)+\frac{35}{32} \zeta(5), \\
J_{2}=-\frac{1}{2} \zeta(3)+\frac{1}{2} \zeta(3) \ln 2+\frac{9}{80} \zeta(3)^{2}-\frac{25}{32} \zeta(5)-\frac{5}{8} \zeta(5) \ln 2, \tag{16}
\end{gather*}
$$

where J_{k} denotes the result of the integration regarding term P_{k}. Note that the canonical form is not unique due to the nonuniqueness of partial fraction expansions. Accordingly, the explicit value of each J_{k} depends on the choice of the canonical form. The final result $J_{0}+J_{1}+J_{2}$, however, is unique as a matter of course.

Combining result (16) with Eqs. (8) and (9), we obtain the third-neighbor correlator $\left\langle S_{j}^{z} S_{j+3}^{z}\right\rangle$ (4) and at the same time, the correlator $\left\langle S_{j}^{z} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{z}\right\rangle$ as

$$
\begin{align*}
\left\langle S_{j}^{z} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{z}\right\rangle= & \frac{1}{80}-\frac{1}{3} \ln 2+\frac{29}{30} \zeta(3)-\frac{2}{3} \zeta(3) \ln 2 \\
& -\frac{21}{80} \zeta(3)^{2}-\frac{95}{96} \zeta(5)+\frac{35}{24} \zeta(5) \ln 2 . \tag{17}
\end{align*}
$$

Now let us consider the four-point correlators of the form $\left\langle S_{j}^{\alpha} S_{j+1}^{\beta} S_{j+2}^{\gamma} S_{j+3}^{\delta}\right\rangle\left(\{\alpha, \beta, \gamma, \delta\} \in\{x, y, z, 0\} ; S_{j}^{0}=1\right)$. Because the correlators with an odd number of $S^{\{\alpha\} \backslash 0}$ vanish, the possible nonzero correlators are restricted to the following
three types: $\left\langle S_{j}^{\alpha} S_{j+1}^{\alpha} S_{j+2}^{\beta} S_{j+3}^{\beta}\right\rangle,\left\langle S_{j}^{\alpha} S_{j+1}^{\beta} S_{j+2}^{\alpha} S_{j+3}^{\beta}\right\rangle$, and $\left\langle S_{j}^{\alpha} S_{j+1}^{\beta} S_{j+2}^{\beta} S_{j+3}^{\alpha}\right\rangle$. Further, due to the isotropy of the Hamiltonian (1), one can find that the independent correlators are written as the following: $\left\langle S_{j}^{x} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{x}\right\rangle$, $\left\langle S_{j}^{z} S_{j+1}^{x} S_{j+2}^{z} S_{j+3}^{x}\right\rangle,\left\langle S_{j}^{z} S_{j+1}^{z} S_{j+2}^{x} S_{j+3}^{x}\right\rangle$ and those already obtained in Eqs. (2)-(4) and (17). Then we shall calculate the remaining three correlators here. For convenience we use the operator $S^{ \pm}$instead of S^{x}. First we consider correlator $\left\langle S_{j}^{+} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{-}\right\rangle\left(=2\left\langle S_{j}^{x} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{x}\right\rangle\right)$. From Eq. (10) and property (11), this correlator is expressed as $\left\langle S_{j}^{+} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{-}\right\rangle=\left(P_{-+++}^{+++-}-P_{-+-+}^{++--}\right) / 2$. Using relation $\left\langle S_{j}^{+} S_{j+3}^{-}\right\rangle=2\left(P_{-+++}^{+++-}+P_{-+-+}^{++--}\right)$, we obtain

$$
\begin{equation*}
\left\langle S_{j}^{+} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{-}\right\rangle=P_{-+++}^{+++-}-\frac{1}{2}\left\langle S_{j}^{z} S_{j+3}^{z}\right\rangle \tag{18}
\end{equation*}
$$

Similarly, the other correlators are given by

$$
\begin{align*}
& \left\langle S_{j}^{z} S_{j+1}^{+} S_{j+2}^{z} S_{j+3}^{-}\right\rangle=P_{+-++}^{+++-}-\frac{1}{2}\left\langle S_{j}^{z} S_{j+2}^{z}\right\rangle, \\
& \left\langle S_{j}^{z} S_{j+1}^{z} S_{j+2}^{+} S_{j+3}^{-}\right\rangle=P_{++-+-\frac{1}{2}\left\langle S_{j}^{z} S_{j+1}^{z}\right\rangle} . \tag{19}
\end{align*}
$$

Therefore our goal is to evaluate the auxiliary correlators $P_{-+++}^{+++-}, P_{+-++}^{+++-}$, and P_{++-+}^{+++-}. They are given if we replace the integrand $T\left(\lambda_{1}, \ldots, \lambda_{4}\right)$ by

$$
T^{(l)}=\frac{\left(\lambda_{1}+i\right)^{3} \lambda_{2}\left(\lambda_{2}+i\right)^{2}\left(\lambda_{3}+i\right) \lambda_{3}^{2} \lambda_{4}^{4-l}\left(\lambda_{4}+i\right)^{l-1}}{\left(\lambda_{21}-i\right)\left(\lambda_{31}-i\right)\left(\lambda_{32}-i\right) \lambda_{41} \lambda_{42} \lambda_{43}}
$$

in the multiple integral representation. Here correlators $P_{+++-}^{-+++}, P_{+++-}^{+-++}$, and P_{+++-}^{++-+}correspond to $l=1,2$, and 3 , respectively. Using the procedure similar to the case of P_{+-+-}^{+-+-}, one obtains the explicit values of the above auxiliary correlators. As a result, combining the relations (18) and (19) with Eqs. (2)-(4), we arrive at

$$
\begin{align*}
\left\langle S_{j}^{+} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{-}\right\rangle= & \frac{1}{120}-\frac{1}{2} \ln 2+\frac{169}{120} \zeta(3)-\frac{5}{6} \zeta(3) \ln 2 \\
& -\frac{3}{10} \zeta(3)^{2}-\frac{65}{48} \zeta(5)+\frac{5}{3} \zeta(5) \ln 2, \tag{20}\\
\left\langle S_{j}^{+} S_{j+1}^{z} S_{j+2}^{-} S_{j+3}^{z}\right\rangle= & \frac{1}{120}-\frac{1}{3} \ln 2+\frac{77}{60} \zeta(3)-\frac{5}{6} \zeta(3) \ln 2 \\
& -\frac{3}{10} \zeta(3)^{2}-\frac{65}{48} \zeta(5)+\frac{5}{3} \zeta(5) \ln 2, \tag{21}\\
\left\langle S_{j}^{+} S_{j+1}^{-} S_{j+2}^{z} S_{j+3}^{z}\right\rangle= & \frac{1}{120}+\frac{1}{6} \ln 2-\frac{91}{120} \zeta(3)+\frac{1}{3} \zeta(3) \ln 2 \\
& +\frac{3}{40} \zeta(3)^{2}+\frac{35}{48} \zeta(5)-\frac{5}{12} \zeta(5) \ln 2 . \tag{22}
\end{align*}
$$

We mention a few remarks of our results.
(i) All the above correlators are written as the logarithm $\ln 2$, the Riemann zeta functions $\zeta(3)$ and $\zeta(5)$. This agrees with the general conjecture by Boos and Korepin: arbitrary correlators of the XXX antiferromagnet are described as certain combinations of logarithm $\ln 2$, the Riemann zeta function with odd arguments and rational coefficients. Espe-

TABLE I. Estimates of the correlators by the exact evaluations, DMRG, and the extrapolations from the numerical diagonalization for the system size $L=24,28,32$.

Correlators	Exact	DMRG	Extrap
$\left\langle S_{j}^{z} S_{j+3}^{z}\right\rangle$	-0.0502486	-0.0502426	-0.0502475
$\left\langle S_{j}^{+} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{-}\right\rangle^{\mathrm{a}}$	0.0205719	0.0205681	0.0205716
$\left\langle S_{j}^{Z} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{z}\right\rangle$	0.0307153	0.0307105	0.0307154
$\left\langle S_{j}^{+} S_{j+1}^{z} S_{j+2}^{-} S_{j+3}^{z}\right\rangle$	-0.0141607	-0.0141579	-0.0141606
$\left\langle S_{j}^{+} S_{j+1}^{-} S_{j+2}^{z} S_{j+3}^{z}\right\rangle$	0.0550194	0.0550108	0.0550198
a $\frac{1}{4}\left\langle c_{j}^{\dagger} c_{j+3}\right\rangle_{f}$.			

cially intriguing is the existence of the nonlinear terms such as $\zeta(3)^{2}, \zeta(3) \ln 2$, and $\zeta(5) \ln 2$.
(ii) As mentioned before, correlator (20) is interpreted as the third-neighbor one-particle Green function $\left\langle c_{j}^{\dagger} c_{j+3}\right\rangle_{f} / 4$ via the Jordan-Wigner transformation (6). Obviously, the first-neighbor one-particle Green function is expressed as

$$
\left\langle c_{j}^{\dagger} c_{j+1}\right\rangle_{f}=\frac{1}{6}-\frac{2}{3} \ln 2 \simeq-0.295431453707
$$

which coincides with $\left\langle S_{j}^{+} S_{j+1}^{-}\right\rangle$. From the Jordan-Wigner transformation, $\left\langle c_{j}^{\dagger} c_{k}\right\rangle=0$ when $j-k$ is even. Therefore, quantity (5) is the first nontrivial exact result of the correlators containing the fermionic nature.
(iii) The difference between Eqs. (20) and (21) gives the nearest chiral correlator

$$
\begin{aligned}
\left\langle\left(\boldsymbol{S}_{j} \times \boldsymbol{S}_{j+1}\right) \cdot\left(\boldsymbol{S}_{j+2} \times \boldsymbol{S}_{j+3}\right)\right\rangle= & 3\left(\left\langle S_{j}^{+} S_{j+1}^{z} S_{j+2}^{-} S_{j+3}^{z}\right\rangle\right. \\
& \left.-\left\langle S_{j}^{+} S_{j+1}^{z} S_{j+2}^{z} S_{j+3}^{-}\right\rangle\right) \\
= & \frac{1}{2} \ln 2-\frac{3}{8} \zeta(3),
\end{aligned}
$$

which exactly agrees with that derived from the ground state energy of an integrable two-chain model with four-body interactions [20].

To confirm the validity of our formulas, we performed numerical calculations by using the density-matrix renormalization group (DMRG) [21,22] and numerical diagonalization. As for the DMRG, we followed the standard algorithm [23]. We have repeated renormalization 500 times. At each renormalization, we kept, at most, 200 relevant states for a (new) block. The numerical diagonalization was performed for the system size $L=24,28$, and 32 . We extrapolate the data from a fitting function $a_{0}+a_{1} / L^{2}+a_{2} / L^{4}$. All our analytical results coincide quite accurately with both numerical results (Table I).

In closing we would like to comment on generalizations of the present results. The extension to the calculation of higher-neighbor correlators $\left\langle S_{j}^{z} S_{j+k}^{z}\right\rangle_{k \geqslant 4}$ is of great interest. The fourth-neighbor correlator $\left\langle S_{j}^{z} S_{j+4}^{z}\right\rangle$, for example, will be calculated by combination of the EFP, $P(5)$ and two independent auxiliary correlators, which can, in principle, be evaluated. In fact $P(5)$ has been already obtained in Ref. [18]. The computation, however, is much more complicated. Alternatively, extending the present result to the inhomogeneous case as in Ref. [19] and taking into account the property of the quantum Knizhnik-Zamolodchikow equation, we may also derive higher-neighbor correlators.

The authors are grateful to H. E. Boos and V. E. Korepin for many valuable discussions. K.S. was supported by the JSPS. M.S. and Y.N. were supported by Grant-in-Aid for young scientists Grant Nos. 14740228 and 13740240, respectively. This work was, in part, supported by Grant-in Aid for the Scientific Research (B) No. 14340099 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
[1] M. Steiner, J. Villain, and C.G. Windsor, Adv. Phys. 25, 88 (1976).
[2] H.A. Bethe, Z. Phys. 71, 205 (1931).
[3] L. Hulthén, Ark. Mat., Astron. Fys. 26, 1 (1938).
[4] I. Affleck, J. Phys. A 31, 4573 (1998).
[5] S. Lukyanov and V. Terras, Nucl. Phys. B 654, 323 (2003).
[6] M. Takahashi, J. Phys. C 10, 1289 (1977).
[7] M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge University Press, Cambridge, 1999).
[8] J. Dittrich and V.I. Inozemtsev, J. Phys. A 30, L623 (1997).
[9] M. Jimbo, K. Miki, T. Miwa, and A. Nakayashiki, Phys. Lett. A 168, 256 (1992).
[10] M. Jimbo and T. Miwa, Algebraic Analysis of Solvable Lattice Models (American Mathematical Society, Providence, RI, 1995).
[11] A. Nakayashiki, Int. J. Mod. Phys. A 9, 5673 (1994).
[12] V.E. Korepin, A.G. Izergin, F.H.L. Essler, and D.B. Uglov, Phys. Lett. A 190, 182 (1994).
[13] M. Jimbo and T. Miwa, J. Phys. A 29, 2923 (1996).
[14] N. Kitanine, J.M. Maillet, and V. Terras, Nucl. Phys. B 567, 554 (2000).
[15] Y-H. Quano, J. Phys. A 35, 9549 (2002).
[16] H.E. Boos and V.E. Korepin, J. Phys. A 34, 5311 (2001).
[17] H.E. Boos and V.E. Korepin, Integrable Models and Beyond, edited by M. Kashiwara and T. Miwa (Birkhäuser, Boston, 2002); H.E. Boos and V.E. Korepin, hep-th/0105144.
[18] H.E. Boos, V.E. Korepin, Y. Nishiyama, and M. Shiroishi, J. Phys. A 35, 4443 (2002).
[19] H.E. Boos, V.E. Korepin, and F.A. Smirnov, Nucl. Phys. B 658, 417 (2003).
[20] N. Muramoto and M. Takahashi, J. Phys. Soc. Jpn. 68, 2098 (1999).
[21] S.R. White, Phys. Rev. Lett. 69, 2863 (1992).
[22] S.R. White, Phys. Rev. B 48, 10345 (1993).
[23] Density-Matrix Renormalization: A New Numerical Method in Physics, edited by I. Peschel, X. Wang, M. Kaulke, and K. Hallberg (Springer-Verlag, Berlin, 1999).

