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We exactly evaluate the third-neighbor correlat@/S/, ;) and all the possible nonzero correlators
<stf+1sj+zsj+3> of the one-dimensional splﬁHelsenberg(XX antiferromagnet in the ground state without
magnetic field. All the correlators are expressed in terms of certain combinations of logarithm In 2, the
Riemann zeta functiofi(3), £(5) with rational coefficients. The results accurately coincide with the numerical
ones obtained by the density-matrix renormalization group method and the numerical diagonalization.
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The spini HeisenbergX X Xchain (c]cisa)i=3—2 N2+ 524(3) — B4(3)In2—£{(3)?

= —3 (5)+ %g(s)ln 2~0.082287 716 69,
H= Jjgl ('S, 1+9/9) 1+ 5S4 y) (1) ®)

r the isotropic spinless fermion model corresponding to Eq.

is one of the most fundamental solvable models describin . :
1) by the Jordan-Wigner transformation:

guantum magnetism in low dimensiof&]. The physical
properties have been comprehensively studied by means of
the Bethe ansaf2,3]. However, the exact calculation of the B it . +
correlation functions, which is a central problem in math- S :Hl (1-2¢jcpek, & :Hl (1—-2cjcj)cg. (6)
ematical physics, is in general still quite difficult. Especially - =

significant are the spin-spin correlat or equiva-

Iegltly (S* S0/ Sp S’E) is), forqvﬁlc;k?)rgly th(t]e first Here (-+-); denotes the expectation value in the half-

filled state of the spinless fermion model. Note that the
ggdfasrecond nelghbork{:l 2) have been exactly calculated different boundary effects caused by the Jordan-Wigner

transformation can be ignored because we consider the ther-
modynam|c limit L—c. Therefore, we have(c Cj+a)t
—4<S+ 1S{+2S;+3)- Moreover, we exactly calculate all
the possmle nonzero correIato(rS“ 1S +28f+3) Result

J
(S{Sf.)=1:—3IN2+3 £(3)=0.06067976996, (3)  (2) comes from the ground state energy of Ey.derived by

Hulthen in 1938[3], while Eqg.(3) was obtained by one of
where{(s) is the Riemann zeta function agd- -) denotes the authors in 19776,7] via the strong coupling expansion
the ground state expectation value of the antiferromagnetitor the ground state energy of the half-filled Hubbard model
model (J>0) in the thermodynamic limit — . (see also Ref(8] for another derivation

On the other hand, the long-distance asymptotics are de- On the other hand, utilizing the representation theory of
termined from field theoretical approachsse, for example, the quantum affine aIgeblaq(§I\2), in 1992, Jimbo and co-
Refs. [4,5]). In this framework, however, microscopical workers derived a universal multiple integral representation
properties coming from lattice structures are renormalizeaf arbitrary correlators for the massi%eXZ antiferromagnet
from the very beginning. In this respect, the exact calculatiorf9,10]. Their result has been extended to KX [11,12,
for the finite distance correlations directly from the Bethethe masslesXXZ[13,14], and theXY Z[15] antiferromag-
ansatz and eventually to determine the asymptotics fromets. However, the explicit evaluation, even for the second-

k—1 k-1

(SiSF, )= % —3In2=-0.14771572685, (2)

them are quite important problems. neighbor correlato(3), was not achieved for a long time.
As a first step, in this paper, we report our results about In this respect, it is remarkable that Boos and Korepin
the third-neighbor correlators. Our main result is recently devised a general method to evaluate the multiple
integral representation in the study of the emptiness forma-
(SIS q)= 2<S+ S a=1-3In2+¥ 3 1(3)—¢(3)In2 tion probability (EFP for the XXX antiferromagnef16,17.
The EFP,P(n) describes the probability of finding a ferro-
—-34(3)*~ 1255(5)+ F1(5)In2 magnetic string of lengtim in the antiferromagnetic ground
0,050 248 627 26. @ state[12]. Explicitly,

n
In addition, we obtain the third-neighbor one-particle Green
aition, P(n)= H
function(c; c; ; 3)s,

)> ()

1063-651X/2003/6(6)/0651014)/$20.00 67 065101-1 ©2003 The American Physical Society



RAPID COMMUNICATIONS

SAKAI et al. PHYSICAL REVIEW E 67, 065101R) (2003
By reducing the integrand of the multiple integral represenyhile T(\1, ... \s) depends on the selection efandz.
tation, the EFP fon=3,4[16,17 andn=5 [18] were evalu-  Here and hereafter we use the notatigp=»\; -\ to save
ated by Boost al. (see also recent progress for=6 [19]).  space. In particular, for correlata©), T(Aq, ... \s) is

Note thatP(2) andP(3) are related to the first- and second- given by
neighbor correlators. Here we quote the explicit form of

P(4) obtained in Refs[16,17], which is closely related to NN+ )23 (N +i) A0S
ird-nei ZZ TN, ... N\g)= - —. (14
the third-neighbor correlatdiS;S; 5). (A 4) (Aor— 1 )N ashath s ao Nag—1) (14)
P(4)=15+3(S/S{. 1)+ 3(S[S[ o) + 1(SS].3) To calculate the multiple integrall2), we follow the
(S T, ) method by Boos and Korepii7]. Roughly, their method is
1511525 +3 described as follows. First taking carefully into account the
=1-2In2+i37(3) - ¢(3)In2—- 2 (3)>—2¢(5) property of U(\q, ... ,)\4),- we quify the integrand
o T(\q, ... ,\4) such that the integral gives the same result as
+224(5)In2. (8)  the original one(“weak equivalence). In this way it is
likely that the integrandl'(\4, ... ,A4) can always be re-

Note that on the antiferromagnetic ground state without magy ,ced to the following formwe call it “canonical form’):
netic field, all the correlators with an odd numberS3fvan-

ishes. Substituting Eq$2) and(3) into Eq.(8), one finds the Pi(A1,A3.hq)  Pa(hg,\3)

relation between the third-neighbor correlat&s’. ;) and ~ Tc=Po(A2, s, a) + or + Nohas (15
the four-point correlatofS{S;. 1S/, .S/ 3). However, the

exact value of(S{S/, ;) itself cannot be determined solely where Py, P, and P, are certain polynomials. Once one

from P(4). derives the canonical form, one can perform the multiple
To determine(SjZSjZ+3>, we consider the following auxil- integral (12) by using the Cauchy theorefl7]. Conse-
iary correlator: quently, the main part of the calculation for the multiple
integral (12) reduces to finding the canonical forh5).
P =% 3(S/S 1) +3(5/S )~ #(S/S+3) Now we consider casél4) and show that the Boos-
yes ez ez Korepin method is also applicable to our case. Let us intro-
+(SS+15+25+3)- ©) duce the following diagram:
Here and hefeaﬁd"iiiiiiﬁj (also written ang for simplic- 1 1
. jo—op = jo—>—0}. = "
ity) denotes a correlator of the form g p Aj’ j Aje — 1
P (EMUEEES, a0

wherej>k. First we expand Eq(14) through partial frac-

~ 5 . tions. The result consists of 24 terms. Taking into account the
where gj, &j={+,—} and E;!") is the 2X2 elementary antisymmetry of functiori13) under transposition of any two
matrix (E**=+8+1/2, E-"=S", E' " =S") acting on  variables\; and\, and the symmetry of, Eq. (14), under
the jth site. In this notationP(4)=P{ 117 . Note that be- \;<>\3, Ao<>\y, We can reduce the 24 partial fractions to
cause the Hamiltonial) has the symmetry under the group eight. Diagrammatically, its denominators are written as

SU(2), P¢ possesses a property like )

2 1 2 1 2 1 2 1 2
Pr=pi=p f=p £, (11) - 5 - N +2< + )
€ e 4 3 4 3 4 3 4 3 43
As in the case oP(4), correlators(10) enjoy the multiple ) 1 2 1 2 1 2 1 2
integral representatiof®—11,13: +21 - - - .
4 3 4 3 dq 3 4 3

4
- d\
pe=]] J o 'I U\, ... A)T(Ng, ... N\a), (12 From a symmetry of the denominator, the second term can
j=1 Jcem further be simplified as

where the integration conto® is taken to be a ling — 1 2 1
—ia,%—ia] (0<a<1). For convenience, we choose —g N - (9(A1, A3, Az, Ag) — g( g, A1, A3,y Ag)
" 3

=1/2. The integrandJ(\4, ... ,\4) iS given by 1 )

+9(A2, Ag, A, As) — g(As, Ag, Ag, A1)

l!_[ Sinh‘ﬂ?\jk 4 3
1sk<j=4

4J ) (13 d %/\1)\2)\3)\4(7:)\1 +ix3 + 2A1/\3)(’5/\2 + i+ 2A2A4)

U()\l, PP ,7\4):7T10
[1 sinHa,
=1

Xy

2 X g——3)
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whereg denotes the numerator of E¢L4). Next using the three types:(S Ja+13’8+2 3 (SO‘SfBJrlSl+2 . 3), and
Cauchy theorem, we shift variablas— A ;=i such that the g o
denom)i/nators do not containFor in?sgné:e we have <S JHS 1253, Further, due fo the isotropy of the
' Hamlltonlan (1), one can find that the independent correla-
tors are written as the following(S'S;, S, ,S/,3),

g ’< = g(l) [\, +g® l N (S/S+15{12S+3)s (S/S{+1S/+25{+3) and those already
obtained in Eqs(2)—(4) and (17). Then we shall calculate
the remaining three correlators here. For convenience we use

— gW N +g£22LA2+1 ’ \ , the operatorS™ instead ofS*. First we consider correlator
3 (S S{+15/+25+a)(=2(S/S{ 115+ »S]+3))- From Eq.(10)
and property (11), this correlator is expressed as
1 13 1213
9" = =M (A1 + )N As(As +4)2A, (S Sf.1S[ 1S3y =(PLIIT—PIIZ7)/2. Using relation
+o— \_ +++- ++——
g(2) — _)\1()‘1_'_1:))\421)\3()‘3_'_2-)2/\3‘ (S §j+a)=2(PLLi1+PI "), we obtain

+ oz z - \_pt+t+t-_1/czcz
Finally again using the antisymmetric property of Ef3), (S Sj+15j+2S+3) =P 141 —2(§S49)- (18)
we eliminate the symmetric part with respectNp— Ay . In

this way we obtain the canonical form as Similarly, the other correlators are given by

Po:%;)\zkg)\i. <SZSI+1 +2Sj_+3> Pirli—3 SZSZ+2>a
Py= 20N, — N2+ ENA2+ N3+ 20N n 3+ 402N 3 (SIS 18428 a) =PIl 2SS, (19
FA(—4iNg+HTAZ=32IA 03— 100N 3— 12120 3) Therefore our goal is to evaluate the auxiliary correlators
PYIiL, PITI7, andPI1 1. They are given if we re-

2 _10\2_ 2_ 3 +4++0 D —+ 4
TAL(ANg = 1AL =280 ah 5~ 10N, place the integrand@(\q, ... \,) by

—28IAgh3—323\3),

T(I):()\1+i)S)\z()\2+i)2()\3+|) YO VRN
Po=— 1o+ $ikat Ehakg— 2N5+AINASTBAIAS. (A21—1)(Ag1—=1)(Ngo— 1) Naihaph g

Subsequently, applying the method given in Réf7], we in the multiple integral representation. Here correlators
calculate the multiple integral by substituting the above cap_*** P ** andP®*_* correspond td=1, 2, and
nonical form into Eq(12). Explicitly, 3, respectively. Using the procedure similar to the case of
P1”1_, one obtains the explicit values of the above auxil-
iary correlators. As a result, combining the relati¢h8) and

(19 with Egs.(2)—(4), we arrive at

PI-t=00+3:+J,

Jo=15, J1=—5+5L(3)+35L5),
toz oz — 1 _1 169 _5

§(3)+2§(3)|n2+80§(3)2 25 ( ) 5(5)"12, <Sj Sj+1S +ZS]+3>_ 20 2|n2+120 (3) 6 (3)|n2

(16) —54(3)°—5¢(5)+§{(5)In2,

whereJ, denotes the result of the integration regarding term (20

P« . Note that the canonical form is not unique due to the

nonuniqueness of partial fraction expansions. Accordingly, (S S,HSHZSHQ,)—%—%In 2+ L52(3)—22(3)In2

the explicit value of eacld, depends on the choice of the

canonical form. The final resull,+J;+J,, however, is —5L(3)*=554(5)+3{(5)In2,

unique as a matter of course. (21
Combining resul{16) with Egs.(8) and(9), we obtain the

third-neighbor correlatotS{Sf, ;) (4) and at the same time, (S S/}, S/ 3) =135+ §IN 2~ 134(3) +3£(3)In 2

ZQZ Z Z
the correlatoKS{S;, 1S, .S, 3) as +22(3)24 334(5)— S¢(5)In 2.
<sjzsf+lsf+zsf+3)—8£—%ln2+§g (3)—2£(3)In2 (22)

—&1(3)*= 8B +354(B)In2. We mention a few remarks of our results.
(17) (i) All the above correlators are written as the logarithm
In 2, the Riemann zeta functiord§¢3) and{(5). This agrees
Now let us consider the four-point correlators of the formwith the general conjecture by Boos and Koregnitrary
<S“Sﬁ+l +3> ({a,B,7,8}e{x,y,z,0};S’=1). Because correlators of the XXX antiferromagnet are described as
the correlators with an odd number Sf“}J\O vanish, the certain combinations of logarithnin 2, the Riemann zeta
possible nonzero correlators are restricted to the followindgunction with odd arguments and rational coefficieriispe-
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TABLE I. Estimates of the correlators by the exact evaluations,which exactly agrees with that derived from the ground state
DMRG, and the extrapolations from the numerical diagonalizationenergy of an integrable two-chain model with four-body in-

for the system siz& =24,28,32. teractiong 20].
To confirm the validity of our formulas, we performed
Correlators Exact DMRG Extrap numerical calculations by using the density-matrix renormal-

ization group(DMRG) [21,22 and numerical diagonaliza-
<Siz+sizz+i‘3> s e —0.0502486 —0.0502426 —0.0502475 5 Asfor the DMRG, we followed the standard algorithm
(S S+15+25+9) 0.0205719 0.0205681 0.0205716 [23]. We have repeated renormalization 500 times. At each
(S/S[11S/+25+3) 0.0307153  0.0307105  0.0307154 renormalization, we kept, at most, 200 relevant states for a
(S'Sf.1S:,S/+3)  —0.0141607 —0.0141579 —0.0141606  (new) block. The numerical diagonalization was performed
(S'S11S/+2S 1 3) 0.0550194  0.0550108  0.0550198 for the system sizé =24, 28, and 32. We extrapolate the
data from a fitting functiormy+a, /L2+a,/L*. All our ana-
a%(c}cj+3)f. lytical results coincide quite accurately with both numerical
results(Table ).
cially intriguing is the existence of the nonlinear terms such In closing we would like to comment on generalizations
as{(3)?, £(3)In2, and{(5)In 2. of the present results. The extension to the calculation of
(i) As mentioned before, correlat¢20) is interpreted as higher-neighbor correlatorsS[S/, )= is of great interest.

the third-neighbor one-particle Green functi()o}rcj+3>f/4 The fourth-neighbor correlatafS{s;, ,), for example, will
via the Jordan-Wigner transformatioi®). Obviously, the be calculated by combination of the EFR5) and two in-
first-neighbor one-particle Green function is expressed as dependent auxiliary correlators, which can, in principle, be
: L, evaluated. In facP(5) has been already obtained in Ref.
(€jCj+1)1=5—35In2=-0.295431453 707, [18]. The computation, however, is much more complicated.
. o o _ Alternatively, extending the present result to the inhomoge-
which coincides with(S;"S; ;). From the Jordan-Wigner neous case as in RdfL9] and taking into account the prop-
transformation,(c;rck)zo when j—Kk is even. Therefore, erty of the quantum Knizhnik-Zamolodchikow equation, we

guantity (5) is the first nontrivial exact result of the correla- may also derive higher-neighbor correlators.

tors containing the fermionic nature. Th -
. . e authors are grateful to H. E. Boos and V. E. Korepin
(iii) The difference between Eqe20) and(21) gives the o many valuable discussions. K.S. was supported by the

nearest chiral correlator JSPS. M.S. and Y.N. were supported by Grant-in-Aid for
B teZ o oz young scientists Grant Nos. 14740228 and 13740240, re-
((§XS41) (542X 543)) =3((§ 5415125 +3) spectively. This work was, in part, supported by Grant-in Aid

—(S" %, 1,57, 5) for the Scientific ReseardB) No. 14340099 from the Min-
! " istry of Education, Culture, Sports, Science and Technology,
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